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A new approach to ideal-fluid hydrodynamics based on the notion of continuous
deformation of infinitesimal material elements is proposed. The matrix approach
adheres to the Lagrangian (material) view of fluid motion, but instead of Lagrangian
particle trajectories, it treats the Jacobi matrix of their derivatives with respect to
Lagrangian variables as the fundamental quantity completely describing fluid motion.

A closed set of governing matrix equations equivalent to conventional Lagrangian
equations is formulated in terms of this Jacobi matrix. The equation of motion
is transformed into a nonlinear matrix differential equation in time only, where
derivatives with respect to the Lagrangian variables do not appear. The continuity
equation that requires constancy of the Jacobi determinant in time takes the form
of an algebraic constraint on the Jacobi matrix. An accompanying linear consistency
condition, which is responsible for the dependence on spatial variables and does not
include time derivatives, ensures completeness of the system and reconstruction of
the particle trajectories by the Jacobi matrix.

A class of exact solutions to the matrix equations that describes rotational non-
stationary three-dimensional motions having no analogues in the conventional for-
mulations is also found and investigated. A distinctive feature of these motions is
precession of vortex lines (rectilinear or curvilinear) around a fixed axis in space.
Boundary problems for the derived exact solutions including matching of rotational
and potential motions across the boundary of a vortex tube are addressed. In partic-
ular, for the cylindrical vortex of elliptical cross-section involved in three-dimensional
precession, the outer potential flow is constructed and shown to be a non-stationary
periodic straining flow at a large distance from the vortex axis.

1. Introduction
There exist several formulations of hydrodynamic equations for studying various

types of fluid motions: either fluid velocity is assumed to be a function of coordinates,
or coordinates of fluid particles are considered to be functions of their initial values,
or complex potential or velocity are sometimes taken as independent variables, and
so on. Choosing an adequate approach may help one simplify the mathematical
model even of very complicated phenomena. Therefore, for an efficient approach
to three-dimensional fluid dynamics problems it is interesting to revise the existing
theories.

The conventional Eulerian approach is most widely used in classical and modern
fluid dynamics. Within the framework of this approach the velocity field or other
related characteristics of motion are considered to be functions of spatial coordinates
and time. An alternative Lagrangian representation is focused on observing the motion
of individual fluid particles identified by three parameters known as Lagrangian
variables. The Lagrangian formulation was employed in a number of classical papers
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(see Lamb 1932; Kochin, Kibel & Roze 1964) but is seldom used in modern fluid
dynamics. The probable reason for this is that viscous terms in the Lagrangian
equations take an extremely complex form (see Monin & Yaglom 1975) making it
difficult to account for viscous effects. However, the Lagrangian method offers certain
advantages in an ideal-fluid theory. For instance, one can make use of conservation
of any Lagrangian invariant (i.e. the quantity that remains constant within a small
fluid mass in the course of motion) to reduce the order of governing equations, since
each Lagrangian invariant represents their explicit time-independent integral.

In this paper we propose a novel approach to ideal-fluid hydrodynamics.† It rests
essentially on the Lagrangian (material) representation of fluid motion but differs
from the conventional Lagrangian formulation as follows. Fluid motion is considered
as continuous deformation of infinitesimal material elements dX from their initial
states at t = 0, dX 0, to the current ones at t > 0 (a material element implies a
small vector between two close individual fluid particles). Evolution of the differential
element dX can be expressed as dX = R dX 0, where the matrix R = (∂Xi/∂X0k)
describes stretching and turning of the vector. Knowledge of matrix R as a function
of spatial coordinates and time provides a complete description of the flow. A closed
set of equations for this matrix equivalent to conventional ideal-fluid equations is
formulated below. Within the framework of this approach matrix R plays the role of
the principal characteristic of motion like the velocity vector in the Eulerian theory
or a particle trajectory in the classical Lagrangian formulation.

Deformation of material elements is a non-trivial matter of considerable physical
interest even in its kinematical aspect, i.e. for a prescribed Eulerian velocity field (see
Dresselhaus & Tabor 1991). The matrix approach which is intrinsically bound up
with deformation of material elements allows one to obtain immediately a complete
description of their kinematics from the solution of the governing matrix equations.

Using a tensor description in fluid mechanics seems quite natural since hydrody-
namics is a particular case of the dynamics of a deformable continuum. But the tensor
quantities of common use such as strain tensor or strain rate tensor are unsuitable
for formulating a closed set of tensor equations. The inadequacy of both the tensors
follows from the fact that they cannot describe directly the rotational part of velocity,
which is essential in fluid dynamics. Unlike the tensors mentioned, the Lagrangian
tensor R allows one to account for the rotational component of motion. However, a
closed system of tensor equations for R governing the motion of an ideal fluid seems
to have never been formulated. This fact does not mean that matrix R has never been
applied in fluid mechanics. For instance, it appears in the formula for vorticity

Ω = RΩ0, Ω0 = Ω|t=0

known as the Cauchy equation (see Batchelor 1967; Saffman 1992, § 1.7). This equation
played an important role in numerous studies of turbulence in large-scale flows within
the framework of the rapid distortion theory, reviewed by Hunt & Carruthers (1990).

The matrix R was also introduced as an auxiliary quantity for succinct notation in
the case of linear dependence of particle coordinates on the Lagrangian variables when
elements of matrix R are functions of time only. A detailed review of recent results
on this type of motion with a free surface together with problems of their stability
can be found in Andreev (1992). However, the general formulation of governing
equations that is primarily employed in that book involves not only matrix R but

† Some elements of the proposed approach were reported in Abrashkin, Zenkovich & Yakubovich
(1997).
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also velocity vector and pressure. Moreover, only a particular form of these equations
that is limited to linear coordinate dependence is then studied. Thus, the equations
found in Andreev (1992) cannot be considered as an adequate closed matrix form of
fluid dynamics equations.

The new matrix formulation of governing equations is discussed in general in
§ 2. Matrix techniques are then developed in § 3 in order to derive and analyse
particular exact solutions. Several classes of solutions describing three-dimensional
non-stationary rotational motions are found and studied in detail.

It is of interest whether the analytical solutions obtained can be applied to localized
vortices in a potential flow. The main difficulty in developing such a model is matching
the rotational flow and the potential one with necessary continuity conditions satisfied
across the boundary of the vortex. It should be noted that analytical matching is
generally problematic in every known approach to vortex dynamics. In § 4 we perform
matching for a particular case of the derived exact solutions and construct a model of a
precessing cylindrical vortex of elliptical cross-section in an external three-dimensional
irrotational strain.

2. Matrix form of the hydrodynamic equations
2.1. Conventional Lagrangian approach

The Lagrangian representation of fluid motion is based on the idea of fluid par-
ticles or material points which are infinitesimal volumes of fluid that remain as
individual entities in the course of motion along their trajectories. Fluid particles are
distinguished by three parameters a, b, c known as Lagrangian variables which must
be in one-to-one correlation with the initial positions of particles, X 0. The motion
is described by the set of trajectories X (a, b, c, t), where X = {X,Y , Z}, X,Y , Z are
Cartesian coordinates. The current position of particles, X , is considered as a function
of time t and the Lagrangian variables a, b, c.

The system of Lagrangian governing equations for an ideal incompressible fluid
comprises two equations: the equation of motion and the equation of continuity (see
Lamb 1932). The equation of motion follows from Newton’s second law for a fluid
particle

X tt = −1

ρ
∇p− ∇Φ, (2.1)

where p is pressure, ρ is density (hereafter assumed constant and uniform), and ∇Φ is
the external potential force per unit mass. The gradients in the right-hand side of (2.1)
are taken with respect to Cartesian space coordinates X,Y , Z , but in the Lagrangian
representation the coordinates play the role of unknown functions of a, b, c. Therefore,
(2.1) is converted into a system that describes the dependence of the trajectories on
the Lagrangian variables in an explicit form:

XttXa + YttYa + ZttZa = −pa/ρ− Φa,
XttXb + YttYb + ZttZb = −pb/ρ− Φb,
XttXc + YttYc + ZttZc = −pc/ρ− Φc.

 (2.2)

Hereafter, the subscripts a, b, c, t denote partial differentiation with respect to the
specified variable.

For an incompressible fluid the continuity equation sets the invariance condition
on the volume of a Lagrangian particle, that is the Jacobian of X,Y , Z with respect
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to a, b, c must be independent of time:

D(X,Y , Z)

D(a, b, c)
=

D(X0, Y0, Z0)

D(a, b, c)
, (2.3)

where X0, Y0, Z0 are the initial positions of the particles at t = 0. It is commonly
assumed that the Lagrangian variables are identical to X0, Y0, Z0; then the Jacobian
in the right-hand side of (2.3) is unity. However, in this paper we shall hold to
the most universal assumption that the Lagrangian variables are an arbitrary set of
parameters. It allows us to perform any necessary change of variables a, b, c in the
further analytical study. Accordingly, we keep the general form of (2.3).

It is well known that pressure and potential force can be eliminated from equations
(2.2) without increasing the order of the system (see Stoker 1957; Lamb 1932). By
cross-differentiation of equations (2.2) with respect to the Lagrangian variables we
obtain a system that can be integrated over time to give

XtbXc −XtcXb + YtbYc − YtcYb + ZtbZc − ZtcZb = S1(a, b, c),

XtcXa −XtaXc + YtcYa − YtaYc + ZtcZa − ZtaZc = S2(a, b, c),

XtaXb −XtbXa + YtaYb − YtbYa + ZtaZb − ZtbZa = S3(a, b, c).

 (2.4)

The integrals of motion S1, S2, S3 found on the right-hand side of these equations are
functions of Lagrangian variables. They are time-independent and are determined
from the initial conditions. Similar equations were introduced in Cauchy’s papers
reviewed by Lamb (1932), and, therefore, S1, S2, S3 are usually called the Cauchy
invariants. Physically, conservation of these quantities follows from Kelvin’s circu-
lation theorem. The Cauchy invariants represent circulations around infinitesimal
material circuits bounding surface elements which correspond to pairs of differentials
db dc, da dc, db da (we shall demonstrate this later in § 2.4). It follows immediately
from (2.4) that the derivatives of Cauchy invariants S1, S2, S3 with respect to the
Lagrangian variables satisfy the equation

∂S1

∂a
+
∂S2

∂b
+
∂S3

∂c
= 0. (2.5)

For irrotational motion all the Cauchy invariants vanish and so do the left-hand sides
of (2.4).

2.2. Jacobi matrix and matrix form of the governing equations

In the Lagrangian representation governing equations are always formulated in terms
of particle trajectories X (a, t), where a = {a, b, c}. Let us consider fluid motion from
another viewpoint by focusing on relative displacements of neighbouring particles. We
now study a material element dX = {dX, dY , dZ} connecting two close particles and
corresponding to the infinitesimal increment of Lagrangian variables da = {da, db, dc}.
The Jacobi matrix is introduced to relate differentials dX and da by

dX = R da, R =

 Xa Xb Xc

Ya Yb Yc

Za Zb Zc

 (2.6)

and consists of the derivatives of current particle positions with respect to the
Lagrangian variables. Like particle positions X,Y , Z , elements of the Jacobi matrix
depend on the Lagrangian variables and time. We shall assume that the Lagrangian
variables have the dimension of length and the elements Rij are dimensionless. In the
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case of linear dependence of X,Y , Z on a, b, c, matrix R includes functions of time
only. If initial particle positions X0, Y0, Z0 are taken for the Lagrangian variables, then
the time evolution of a material element dX 0 can be directly expressed as dX = R dX 0,
therefore matrix R is referred to as the distortion matrix by Landau et al. (1986). It
is noteworthy that such a Jacobi matrix changes as a tensor with transformation of
space coordinates X,Y , Z . Obviously, under the assumption a = X 0, the initial Jacobi
matrix becomes a unit matrix.

Considering motion as continuous deformation, as is proposed in this paper, is
natural for continuum mechanics (cf. the tensor description commonly employed in
the elasticity theory). Let us determine how the Jacobi matrix is related to the strain
tensor E defined in the elasticity theory (see Landau et al. 1986) by

|dX |2 − |dX 0|2 = 2Eij dai daj.

In terms of the Jacobi matrix (2.6) the strain tensor is written as

E = 1
2

(RTR − RT
0 R0), (2.7)

where RT is the transposed matrix. According to the above expression, the rotational
part of motion is not accounted for when converting the Jacobi matrix into strain
tensor. Hence, the latter cannot represent motion of a fluid adequately.

The present paper aims to show that the Jacobi matrix can play the role of a
fundamental quantity sufficient to provide a closed description of fluid motion. Let us
find out which equations it obeys. First note that the continuity equation (2.3) which
requires constancy of the Jacobian in time naturally has a matrix form

detR = detR0, R0 = R |t=0 . (2.8)

There is also the possibility to rewrite equations (2.4) in terms of the Jacobi matrix
due to their homogeneous structure. It can be verified directly that (2.4) turns into a
single matrix equation

RT
t R − RTRt = S , S =

 0 S3 −S2

−S3 0 S1

S2 −S1 0

 . (2.9)

The right-hand side of this matrix equation takes the form of an antisymmetric matrix
S composed of the Cauchy invariants.

The pair of equations (2.8)–(2.9) represents a matrix analogue of (2.3)–(2.4) and is
expressed in terms of the Jacobi matrix, that is of a set of nine unknown functions
of the Lagrangian variables and time. Obviously, (2.8) and (2.9) are not sufficient for
formulation of a closed system of governing matrix equations. Note that the matrix
that satisfies (2.8) and (2.9) does not necessarily take the form of the Jacobi matrix
(2.6), hence not every solution of these equations will be physically meaningful. To
construct a closed set of hydrodynamic matrix equations we need to add a consistency
condition to (2.8)–(2.9). For a consistent solution R we should be able to reconstruct
trajectories X (a, t), for which R serves as the Jacobi matrix.† Since, according to (2.6),
rows of matrix R must contain components of gradients of X,Y , Z with respect to

† Supplementary conditions of the same nature are found in the elasticity theory where they are
responsible for the presence or absence of dislocations (see Landau et al. 1986).
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a, b, c, the consistency condition becomes

∂Rnm

∂ak
=
∂Rnk

∂am
, (2.10)

all indices changing from 1 to 3 (we shall imply hereinafter when using indexed
notation that a1, a2, a3 and X1, X2, X3 are identical to a, b, c and X,Y , Z , respectively).
The local condition (2.10) is equivalent to vanishing of integral

∮
R da around any

closed curve in the space of Lagrangian variables, hence, integrals
∫ B
A
R da, where

A and B are arbitrary points in space a, b, c, must not depend on the path between
A and B.

For solution R of the complete system (2.8)–(2.10) particle trajectories are obtained
by integration over the Lagrangian variables

X (a, t) =

∫ a

0

R(q, t)dq + X (0, t). (2.11)

The integration constant X (0, t) is an arbitrary function of time independent of the
Lagrangian variables. This term is related only to the motion of fluid mass as a
whole and does not change the relative motion of individual particles. The effect of
this term is the same as of observing the flow from a certain, generally non-inertial,
frame of reference. As seen from the basic equations (2.2) and (2.3), this ‘solid-body’
component does not influence non-trivial motion in the mass of fluid and therefore
it will be omitted.

Thus, the matrix equations of motion (2.9) and continuity (2.8) together with
the consistency condition (2.10) constitute a closed formulation of hydrodynamic
equations that is equivalent to the initial equations (2.2), (2.3) and must be solved for
the Jacobi matrix.

Several general features of (2.8)–(2.10) are of importance. Equation (2.9) contains
time derivatives of R only and is free of a, b, c-derivatives. On the other hand, the
consistency condition (2.10) is a linear equation for space derivatives where time does
not appear at all.

As in the other approaches, a particular problem may be greatly simplified in
the matrix formulation by an appropriate choice of the coordinate system and the
Lagrangian variables. We now discuss how a change of variables can modify the
form of matrix equations. It is noteworthy that linear unitary transformations of
X,Y , Z and a, b, c to complex coordinates and Lagrangian variables do not change
the structure of matrix equations. For instance, let us introduce complex coordinates
W = {W1,W2,W3} defined by

W1 = 2−1/2(X + iY ), W2 = 2−1/2(X − iY ), W3 = Z (2.12)

in place of the real quantities X = {X,Y , Z}. The vector form of this transformation
involves the unitary matrix T :

W = TX , where T = 2−1/2

 1 i 0

1 −i 0

0 0 21/2

 . (2.13)

This particular form of T does not restrict substantially the generality of further
analysis. As is known, an arbitrary unitary transformation can be decomposed into
the rotation of axes by a certain angle and the unitary transformation (2.13). The
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derivatives of the new coordinates with respect to a, b, c can be considered as elements
of a new complex Jacobi matrix L1 = (∂Wi/∂aj) = TR . The system of hydrodynamic
equations in terms of L1 takes the form

det L1 = det L1 0, (2.14a)

L∗1 tL1 − L∗1L1 t = S , (2.14b)

∂L1 nm

∂ak
=
∂L1 nk

∂am
, (2.14c)

where L∗1 denotes the Hermitian conjugate to L1. The right-hand side of (2.14a) is
det L1 0 = −i detR0, the matrix S in (2.14b) must be real and antisymmetric as in the
original equation (2.9). However, only those complex solutions L1 of the system (2.14a–
c) that can be conversely transformed into a real R satisfying equations (2.8)–(2.10)
are physically significant. To separate unnecessary complex solutions, an additional
restriction on L1 should be imposed. Namely, it requires that reconversion of L1 to
the original real variables should result in a real-valued matrix: Im{T ∗L1} = 0.

Another way of modifying system (2.8)–(2.10) is an appropriate choice of the
Lagrangian variables. It is even possible to employ complex parameters as the La-
grangian variables, as it was shown by Abrashkin & Yakubovich (1984) for two-
dimensional flows. Consider, for instance, the form of matrix equations (2.8)–(2.10)
after conversion to the complex Lagrangian variables ξ = {ξ1, ξ2, ξ3} defined by

ξ1 = 2−1/2(a+ ib), ξ2 = 2−1/2(a− ib), ξ3 = c or ξ = Ta, (2.15)

where T is the same as in (2.13). With this change of variables, a new Jacobi matrix
can be defined as L2 = (∂Xi/∂ξj) = RT ∗. Matrix L2 obeys a system of hydrodynamic
equations almost identical to (2.14a–c). The difference is that in place of S in (2.14b),
the complex anti-Hermitian matrix TST ∗ appears on the right-hand side of the new
equation of motion, and the consistency condition should be rewritten with the new
complex Lagrangian variables: ∂L2 nm/∂ξk = ∂L2 nk/∂ξm.

Now let us apply both transformations to the complex space coordinates (2.13)
and complex Lagrangian variables (2.15) together†. In this case the complex Jacobi
matrix is introduced as L = (∂Wi/∂ξj) = TRT ∗ and obeys the system of hydrodynamic
equations

det L = det L0, (2.16a)

L∗tL− L∗Lt = M , (2.16b)

∂Lnm

∂ξk
=
∂Lnk

∂ξm
, (2.16c)

where M = TST ∗ is a complex anti-Hermitian matrix independent of time. The matrix
M can be expressed in terms of the Cauchy invariants S1, S2, S3 (see (2.4), (2.9)) as
follows:

M =

 −iS3 0 2−1/2(−S2 + iS1)

0 iS3 2−1/2(−S2 − iS1)

2−1/2(S2 + iS1) 2−1/2(S2 − iS1) 0

 . (2.17)

† In general, the transformation matrices for coordinates and Lagrangian variables may differ,
but it would not change the structure of the resulting system of matrix equations. Here, we consider
transformations W = TX and ξ = Ta with the same T for simplicity of manipulation only.
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The restriction on a solution to (2.16a–c) similar to that established for (2.14a–c)
remains valid. Namely, the reconversion of a solution L to the real variables must
yield a real matrix: Im{T ∗LT } = 0. To obtain explicit conditions following from this
requirement, we write down elements of L in terms of X,Y , Z and a, b, c using (2.12),
(2.15):

L =



∂(X + iY )

∂(a+ ib)

∂(X + iY )

∂(a− ib)

∂(X + iY )

∂c

∂(X − iY )

∂(a+ ib)

∂(X − iY )

∂(a− ib)

∂(X − iY )

∂c

∂Z

∂(a+ ib)

∂Z

∂(a− ib)

∂Z

∂c


. (2.18)

Obviously, the elements of L must be interrelated as follows:

L22 = L̄11, L12 = L̄21, L23 = L̄13, L32 = L̄31, ImL33 = 0, (2.19)

where the bar denotes a complex conjugate. For the chosen set of complex coordinates
and Lagrangian variables, any matrix L satisfying the conditions (2.19) corresponds
to a real matrix R = T ∗LT .

The system of equations for the Jacobi matrix should be solved under certain initial
and boundary conditions.

2.3. Initial and boundary conditions

We now specify the formulation of initial-value problems of fluid dynamics for real
matrix equations. Although the initial matrix R0 also appears on the right-hand side
of the continuity equation, it is virtually only related to the choice of the Lagrangian
variables a, b, c for a particular problem and does not contain any information about
the initial flow pattern. Obviously, R0 is supposed to satisfy the condition (2.10).
Physically meaningful initial conditions consist in a given velocity field at t = 0, and
therefore the initial time derivative Rt0 that specifies velocities at t = 0 is essential.
A particular feature of the matrix equations (2.8), (2.9) is that the time invariants
determined by the initial matrices R0 and Rt0 appear on their right-hand sides. For
the matrix of the Cauchy invariants S , by virtue of (2.9) we have

S = RT
t0 R0 − RT

0 Rt0.

We consider now the boundary conditions for the matrix equations. Generally,
it is impossible to give their closed expression in terms of the Jacobi matrix.† We
shall therefore revert to the trajectories X (a, t) related to R by (2.11) and survey the
Lagrangian form of the ideal-fluid boundary conditions. This form was mentioned
in Stoker (1957) but still requires a more systematic discussion. There are three
primary boundary problems of fluid dynamics: a flow at a rigid boundary, free-surface
problems, and flows with interfaces between neighbouring motions of different types.

We begin with the impermeability condition at the boundary of a solid body. In
the most general case, the surface of the body bounding the flow can be described
by the implicit equation Q(X ) = 0, where Q is a scalar function of coordinate X . As
is well known, the impermeable boundary conditions at this surface are formulated
for an ideal fluid as X t · ∇Q = 0. Considering Q(X (a, t)) as a function of a we find

† It is quite analogous, say, to Helmholtz’s equation of vorticity (see e.g. Saffman 1992, § 1.5),
where there are no explicit inviscid boundary conditions for vorticity, and velocity field should be
determined to impose the conventional boundary conditions.



Matrix approach to Lagrangian fluid dynamics 175

that X t · ∇Q = (∂Q/∂Xi)(∂Xi/∂t) = (∂Q/∂t)|a=const = 0, that is, Q as a function of
a, b, c must be conserved for any particle travelling along the surface of the body.
Thus, if the rigid boundary has no cusps and sharp edges and flow separation does
not occur, so that fluid particles do not come onto the boundary and do not leave it,
then (∂Q/∂t)|a=const = 0 can serve as the Lagrangian condition of impermeability.

At the free surface of a fluid, both kinematic (impermeability of the surface)
and dynamic (constancy of pressure) conditions must be satisfied, the shape of the
surface being not fixed contrary to the previous case. In the Lagrangian approach,
the kinematic condition is reduced to the statement that the free surface corresponds
to a fixed surface Q(a) in the space of the Lagrangian variables, which is simpler and
more straightforward than the conventional Eulerian formulation. The commonly
used dynamic condition of pressure constancy at the free surface p|Q=0 = const can
be converted into the condition of collinearity of the gradients of pressure and of
function Q(a) with respect to the Lagrangian variables

∇a p× ∇aQ = 0,

where ∇a p = −ρ (RTX tt + ∇aΦ) from the initial equation of motion (2.2), and
acceleration X tt can be found from (2.11) by time differentiation.

Consider now the third type of boundary condition, that across the interfaces
separating motions of different types, for instance potential and rotational flows or
domains of closed trajectories adjacent to regions of unbounded pathlines going to
infinity. The Lagrangian variables q1,2 in these regions can be introduced in different
ways through functions X 10(q1) and X 20(q2), indices 1 and 2 denoting the domain of
the flow. But the equations of the interface must of course coincide while coordinates
X 1,X 2 tend to the interface: Q(X 1, t) = Q(X 2, t) = 0, even if X 1(q1, t) and X 2(q2, t)
are different functions of the Lagrangian variables at the interface. When the normal
components of velocity V = X t are regarded as functions of space coordinates, they
must be continuous across the interface:

V1n = V2n, V1,2 n = X 1,2 t · ∇X Q |∇X Q|−1
, (2.20a, b)

where ∇X is the gradient with respect to coordinates X,Y , Z . If a jump in the
tangential velocity is admitted, the continuity condition at the interface should be
satisfied for both normal velocity and pressure. Under the assumption of no jump in
the tangential velocity, the condition (2.20a) for the normal velocity and, additionally,
a similar condition for the tangential velocity must hold. It is practical to introduce
the Lagrangian variables in two adjacent regions consistently in order to obtain
parameterizations that coincide: q1 = q2, X 1(q1, t) = X 2(q2, t) while coordinates X 1

and X 2 tend to the interface. With such parameterizations, velocity components in
(2.20a) can be expressed as functions of the Lagrangian variables. A similar technique
will be employed in § 4 when considering potential and rotational motions that agree
at the boundary of a vortex.

2.4. Evolution of vorticity in matrix representation

The vorticity field is an essential characteristic of any motion of a fluid. We shall now
discuss how vorticity dynamics is expressed in terms of the Jacobi matrix. Together
with vector Ω = rotV , consider vorticity matrix Ω defined via the antisymmetric part
of the matrix of velocity derivatives with respect to coordinates (∂Vi/∂Xj), so that
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the elements of matrix Ω coincide with vorticity components:

(Ω)ij =
∂Vj

∂Xi

− ∂Vi

∂Xj

. (2.21)

An expression for vorticity components Ωi and elements of the vorticity matrix (Ω)ij
is obtained using the Levi–Civita tensor eijk:

(Ω)ij = eijk Ωk, Ωi = 1
2
eijk (Ω)jk. (2.22a, b)

On substituting the equality (∂Vi/∂Xj) = RtR
−1 into (2.21) the expression for matrix

Ω in terms of the Jacobi matrix becomes

Ω =
(
R−1

)T
RT
t − RtR−1. (2.23)

The relationship between Ω and the matrix of the Cauchy invariants, S , is found
by premultiplying (2.23) by RT and postmultiplying it by R , and then by using the
matrix equation of motion (2.9):

RTΩR = S , Ω =
(
R−1

)T
S R−1. (2.24a, b)

We see from these matrix equations that the vorticity can be obtained directly from the
Jacobi matrix, provided the Cauchy invariants are known. Let us introduce a vector
notation for the set of Cauchy invariants: S = {S1, S2, S3}, so that the relationship
between S† and matrix S takes the same form as the relationship (2.22b) between
vorticity and matrix Ω. Reduction of the matrix equation (2.24b) to the vector form
is performed using the Levi–Civita tensor and results in

Ω =
R

detR0

S , (2.25)

which is, in fact, the well-known Cauchy equation for vorticity (Batchelor 1967;
Saffman 1992, § 1.7) in a general form for arbitrary choice of the Lagrangian variables.
The conventional form of this equation

Ω = RΩ0, where R =

(
∂Xi

∂X0j

)
, (2.26)

implies that the initial particle positions X0, Y0, Z0 are taken as the Lagrangian
variables.

The generalized equation (2.25) enables one to find the Cauchy invariants for
arbitrary a, b, c from given initial vorticity

S = R−1
0 Ω0 detR0.

Obviously, in the particular case a = X 0 (R0 = I , detR0 = 1), the Cauchy invariants
are identical to the initial vorticity components: S = Ω0.

The expanded form of (2.25)

Ω =
1

detR0

(
S1

∂X

∂a
+ S2

∂X

∂b
+ S3

∂X

∂c

)
(2.27)

allows us to interpret the meaning of the Cauchy invariants geometrically. Consider
a, b, c as the coordinates of a curvilinear coordinate system in space. By definition
of the Lagrangian variables, such a ‘frozen-in’ coordinate system must experience

† To avoid misunderstanding, we note that S is not a true vector in the physical space X,Y , Z .
The physical meaning of S1, S2, S3 will be discussed later.
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continuous deformation in the course of fluid motion. It should be noted that
vectors ∂X/∂a, ∂X/∂b, ∂X/∂c indicate the directions of displacement of the point
X (a, t) during the variation of a, b, c, that is, the directions of the corresponding
coordinate lines in space. Therefore, we can see from (2.27) that Si / detR0 are,
actually, components of vorticity along the frozen-in ‘axes’ of Lagrangian variables.
Obviously, the total vorticity field also proves to be frozen-in due to constancy of
these components in time.

An important particular case, when only one of the three Cauchy invariants, say,
S3, is not zero so that S = {0, 0, S3}, is worthy of more detailed consideration. Under
this assumption, expression (2.27) reduces to

Ω =
S3

detR0

∂X

∂c
. (2.28)

It follows from vanishing of divergence of S with respect to the Lagrangian variables
(2.5) that the only non-zero Cauchy invariant does not depend on c: S3 = S3(a, b).
Besides, the vorticity (2.28) is everywhere tangential to the coordinate lines of c:
Ω ‖ X c. This means that for such flows the vortex lines containing a given particle
a∗ = {a∗, b∗, c∗} can be immediately found from particle trajectories X = X (a, t) by
varying c, with a∗ and b∗ fixed.

Another noteworthy feature of flows with one non-zero Cauchy invariant only can
be also seen from (2.28). It turns out that the Lagrangian variables for such flows
are closely connected with Clebsch potentials (see Lamb 1932), which serve as the
canonical variables in the Hamiltonian formulation of fluid dynamics (Zakharov &
Kuznetsov 1997). To demonstrate this we employ the vector identity X c = detR0 ∇a×
∇b following from the fact that the Jacobi matrix (∂Xi/∂aj) is inverse to the matrix
(∂ai/∂Xj). On substituting this identity into (2.28), for vorticity we have

Ω = S3 ∇a× ∇b = ∇λ× ∇µ,
where λ and µ stand for the Clebsch potentials which can be defined as λ = a, µ =∫
S3 db or as λ =

∫
S3 da, µ = b.

An alternative physical interpretation of the Cauchy invariants is provided by
resolving (2.25) for S and then expanding the result into component form:

S1 = detR0 ∇a ·Ω, S2 = detR0 ∇b ·Ω, S3 = detR0 ∇c ·Ω. (2.29a–c)

Since elements ∂ai/∂Xj constitute a matrix which is inverse to the Jacobi ma-
trix (∂Xi/∂aj), it is possible to derive the vector formulae detR0 ∇a = X b × X c,
detR0 ∇b = X c×X a, detR0 ∇c = X a×X b, which can then be substituted into (2.29a–
c). Now consider the infinitesimal surface elements corresponding to differentials of
the Lagrangian variables db dc, dc da and da db, which are characterized by normal
vectors X b×X c db dc, X c×X a dc da, X a×X b da db of magnitudes equal to the areas
of the surface elements. It follows from (2.29a–c) and the vector identities mentioned
above that the Cauchy invariants represent vorticity fluxes through these surface ele-
ments or, by the Stokes theorem, elementary circulations dΓi around material circuits
embracing the surface elements:

dΓ1 = S1 db dc, dΓ2 = S2 dc da, dΓ3 = S3 da db.

Thus, constancy of Si reflects Kelvin’s circulation theorem locally.
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3. Exact solutions to matrix equations: flows with precessing vorticity
3.1. Elementary solutions to matrix equations

As an example of an elementary solution to the hydrodynamic equations (2.8)–(2.10)
let us consider the Jacobi matrix

R = eγ̂t R0, (3.1)

where γ̂ is a constant (independent of a, b, c, t) antisymmetric matrix

γ̂ =

 0 γ3 −γ2

−γ3 0 γ1

γ2 −γ1 0

 . (3.2)

On substituting this matrix expression into (2.8)–(2.10), we first note that the deter-
minant of (3.1) does not depend on time by virtue of orthogonality of the matrix
exponential eγ̂t: det eγ̂t = 1, detR = detR0, so the continuity equation (2.8) is satisfied
identically. It is natural to assume that the initial matrix R0 defined by the choice
of the set of Lagrangian variables obeys the consistency conditions (2.10). By direct
verification we see that under this supposition for R0 the conditions (2.10) hold for
any subsequent moment of time. Finally, the equation of motion (2.9) is satisfied,
with the matrix of the Cauchy invariants being

S = −2RT
0 γ̂R0. (3.3)

So, solution (3.1) describes the evolution of any (not necessarily infinitesimal) material
element δX 0 as δX = exp (γ̂t) δX 0. It can be seen that (3.1) implies the solid-body
rotation of the fluid as a whole. Indeed, (δX )t = γ̂ δX = −γ × δX that corresponds
to rotation with angular velocity −γ, where γ = {γ1, γ2, γ3}. The vorticity of such a
motion is constant and uniform: Ω = −2γ. Note that the Cauchy invariants in (3.3)
depend on the form of the initial matrix R0, that is, on the choice of the Lagrangian
variables.

The system of matrix equations also admits solutions

R = R0 eω̂t, (ω̂)ij = eijkωk, ωk = const, (3.4)

where matrix ω̂ is constant and antisymmetric, as in (3.1).
Unlike solution (3.1), this matrix expression satisfies (2.9) only if the matrices ω̂

and RT
0 R0 commute. The matrix of the Cauchy invariants for such solutions takes the

form

S = −2 ω̂RT
0 R0 (3.5)

and also commutes with ω̂. The consistency conditions (2.10) impose additional
constraints on R0. We shall analyse this type of solution later as a particular case of
a more general family.

Let us now seek solutions to the governing equations (2.8)–(2.10) by combining
expressions (3.1) and (3.4) into

R = eγ̂t R0 eω̂t, (3.6)

where the antisymmetrical matrices γ̂ and ω̂ consist of constants, as in (3.2) and (3.4).
This expression contains three matrix co-factors, two exponential terms depending on
time only, and R0 determined by the relationship between X0, Y0, Z0 and a, b, c. It is
obvious that the continuity equation (2.8) is satisfied by (3.6) identically.

Let us analyse the equation of motion (2.9) for the matrix expression (3.6). On
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substitution we find that, if the commutation condition[
ω̂,
(
2RT

0 γ̂R0 + ω̂RT
0 R0 + RT

0 R0 ω̂
)]

= 0 (3.7)

holds, then matrix S does not depend on time and (2.9) is satisfied. Then, for matrix
S we have

S = −2RT
0 γ̂R0 − ω̂RT

0 R0 − RT
0 R0 ω̂. (3.8)

At the same time, the commutation condition (3.7) imposes a certain constraint on
the form of the initial matrix R0. Its analysis is greatly simplified by converting
matrices γ̂ and ω̂ to the diagonal form. Transformation of matrix γ̂ into the form
diag{−iγ, iγ, 0}, γ being the modulus of its non-zero eigenvalues, is performed by
rotation of coordinate axes X,Y , Z with subsequent change to complex variables
by formulae (2.12). A similar transformation of the Lagrangian variables, with the
change to the complex variables introduced in (2.15), allows us to independently
diagonalize matrix ω̂ to diag{−iω, iω, 0}, where ω stands for the absolute value of
the non-zero eigenvalues of the initial real matrix ω̂. As we have seen in § 2.2, the
combined transformations of X,Y , Z and the Lagrangian variables imply conversion
of real matrix R into complex Jacobi matrix L, that must satisfy system (2.16a–c). A
solution sought in the form (3.6) corresponds to the complex matrix

L = diag{e−iγt, eiγt, 1} L0 diag{e−iωt, eiωt, 1}. (3.9)

On substituting it into the complex motion equation (2.16b) we obtain on the left-hand
side the expression e−ω̂tN eω̂t, where matrix N is given by

N = −2 L∗0γ̂ L0 − ω̂ L∗0L0 − L∗0L0 ω̂. (3.10)

Further development shows that N contains only two independent elements N11, N31

and has the following structure:

N =

 N11 0 −N̄31

0 −N11 −N31

N31 N̄31 0

 , (3.11a)

where

N11 = 2i
{

(ω + γ)|L11|2 + (ω − γ)|L21|2 + ω|L31|2} , (3.11b)

N31 = i
{

(ω + 2γ)L11L̄13 + (ω − 2γ)L21L13 + ωL31L33

}
; (3.11c)

Lnm denote the elements of L0 (the subscript ‘0’ in L0, nm is omitted for brevity). For
the matrix of the Cauchy invariants M = e−ω̂tN eω̂t to be independent of time, it is
necessary and sufficient that matrices N and ω̂ = diag{−iω, iω, 0} should commute.
Therefore, N must have the diagonal structure as well as ω̂. Vanishing of N31 ensures
that all non-diagonal elements of N are equal to zero. So, N31 = 0 will be the
requirement on the initial Jacobi matrix L0 sought that follows from the equation of
motion.

In addition, to construct a solution of the complete set of matrix equations, we
must satisfy the consistency condition (2.16c). Suppose that matrix L0 in (3.9) has the
following structure: elements of any kth column depend only on the kth Lagrangian
variable:

L0 =

 L11(ξ1) L12(ξ2) L13(c)

L21(ξ1) L22(ξ2) L23(c)

L31(ξ1) L32(ξ2) L33(c)

 , (3.12)
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where all elements Lnm are functions of one argument, and c is identical to the real
variable ξ3 according to (2.15). If such a separation of variables in columns occurs,
then the consistency condition for L0 (2.16c) is satisfied trivially:

∂Lnm

∂ξk
=
∂Lnk

∂ξm
≡ 0 for m 6= k.

By virtue of diagonality of both ω̂ and γ̂, the consistency condition for the complete
time-dependent solution (3.9), with L0 having the structure (3.12), holds at any moment
of time.

Now, taking into account the ‘matrix’ separation of variables (3.12), we can represent
the condition N31 = 0, where N31 is given by (3.11c), as

(ω + 2γ)L11(ξ1)L̄13(c) + (ω − 2γ)L21(ξ1)L13(c) + ωL31(ξ1)L33(c) = 0 . (3.13)

If this principal requirement following from the system of matrix equations is met
by an appropriate choice of elements Lnm, matrix L0 can be completed using the
relations (2.19). Substituting L0 found from (3.13) into (3.9) we obtain the time-
dependent matrix that satisfies all the derived conditions, i.e. the solution to the
matrix hydrodynamic equations.

Let us point to a property of the vorticity field common to any solutions in the
form (3.9) that can be derived from (3.13). Vorticity is determined by the matrix of
the Cauchy invariants M which, for the solutions satisfying (3.13), takes the form
M = N = diag{−iS3, iS3, 0}, where

S3 = −2[(ω + γ)|L11|2 + (ω − γ)|L21|2 + ω|L31|2]. (3.14)

We see from (2.9), (2.17) that the real matrix S corresponding to the diagonal M
contains only one non-zero invariant S3. As shown in § 2.4, for this case the vorticity
is given by (2.28), and vortex lines follow the coordinate lines of the Lagrangian
variable c considered as a curvilinear coordinate in space.

There are several possible ways to solve equation (3.13) by separation of variables,
resulting in different classes of fluid motion. We shall discuss them in turn.

3.2. Planar Ptolemaic flows

A straightforward way to satisfy (3.13) is to suppose that functions L13(c) and L31(ξ1)
vanish. Then, according to (2.19), so do L23(ξ2) and L32(c). Under this assumption,
all the other elements of L0 appearing in (3.13): L11(ξ1), L21(ξ1) and L33(c), can
be taken arbitrarily. It is convenient for further analysis to introduce functions
G(ξ1), F(ξ2), q(c) such that L11(ξ1) = G′(ξ1), L21(ξ1) = F ′(ξ2), L33(c) = q′(c), where G
and F are analytical functions of their arguments, q is a real-valued function of c
(in § 3, the prime denotes differentiation with respect to the argument of a function).
After that, we construct the initial complex Jacobi matrix L0 (3.12) using (2.19):

L0 =

 G′(ξ1) F ′(ξ2) 0

F ′(ξ2) G′(ξ1) 0

0 0 q′(c)

 . (3.15)

Substituting this matrix into (3.9) yields the time-dependent solution to the matrix
hydrodynamic equations in complex form. Let us consider the elements of the second
row of matrix (3.15) taking into account that ξ1 and ξ2 are complex conjugate by the
definition (2.15). In conformity with the Riemann–Schwartz symmetry principle (see
Hurwitz & Courant 1964), element F ′(ξ2) is an analytic function of ξ̄2, that is, of ξ1:
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F ′(ξ2) = F̄ ′(ξ̄2) = (F̄)′(ξ1) (the notation F̄ implies the function defined by F̄(ζ) = F(ζ̄),
and as follows directly from that symmetry principle, F̄ ′ = (F̄)′). By analogy G′(ξ1)
is an analytic function of ξ2. Evidently, the obtained matrix (3.15) fits in the matrix
structure (3.12), and the consistency condition (2.16c) is satisfied trivially: all the
cross-derivatives of the elements of (3.15) vanish.

The particle trajectories corresponding to the obtained matrix solution are found by
integrating (3.9) with the matrix L0 (3.15) over the complex Lagrangian variables by
analogy with (2.11), which represents the reconstruction of trajectories from the real
matrix R . For convenience, we shall keep complex notation for particle trajectories:
W1,W2, Z are the current complex coordinates of a particle as introduced in (2.12),
and they depend on complex Lagrangian variables ξ1, ξ2, c (2.15) and time. The
integration yields

W1 = G(ξ1) e−i(ω+γ)t + F(ξ2) ei(ω−γ)t, W2 = W̄1, Z = q(c). (3.16a–c)

Here G and F are arbitrary analytical functions of the complex Lagrangian variables,
q depends on real Lagrangian variable c, and ω, γ are real constants. Obviously,
since Z in (3.16c) does not depend on time, this solution is purely two-dimensional,
with the Z-component of velocity vanishing and particle motion occurring in the
Z = const planes. Exact solutions of this type studied by Abrashkin & Yakubovich
(1984) are known as the Ptolemaic flows. This term reflects the following analogy:
the particle trajectories in (3.16a) represent a combination of two circular revolutions
with different amplitudes and different frequencies, thus forming epi- or hypocycloids.
It is the type of motion that celestial bodies undergo according to Ptolemaeus’ model
of the universe. The Ptolemaic solutions (3.16a) incorporating two arbitrary analytical
functions describe an extensive family of two-dimensional non-stationary rotational
motions with vorticity

Ω = −2

(
|G′|2 + |F ′|2
|G′|2 − |F ′|2 ω + γ

)
{0, 0, 1} (3.17)

directed normally to the plane of particle trajectories and generally inhomogeneous
in space.

A number of exact solutions known in the Lagrangian representation such as the
Gerstner waves or Kirchhoff’s elliptical vortex are particular cases of this family of
solutions. Interest in the Ptolemaic solutions is primarily connected with the fact
that they provide an opportunity to study analytically a class of bounded non-
stationary vortices surrounded by potential flows. Conventional approaches do not
permit obtaining such analytical solutions to this problem except for a few classical
particular cases.

Assume that a rotational Ptolemaic motion occurs in the interior of a vortex region
corresponding to the unit disc on the plane of the complex Lagrangian variable ξ1.
The general solution (3.16a) applies to bounded vortices under the restriction that
ω = γ, G(ξ1) = ξ1, and F(ξ2) is analytical within the unit disc |ξ2| 6 1 and there
obeys the condition |F ′| < 1. In this case (3.16a) becomes

W1 = ξ1 e−2iωt + F(ξ̄1), (3.18)

where ξ2 is replaced by ξ̄1 in conformity with (2.15). By substituting ξ1 = exp (iϕ) into
(3.18) we straightforwardly obtain the parametric expression for the vortex boundary
corresponding to the unit circle |ξ1| = 1:

W1 = ei(ϕ−2ωt) + F(e−iϕ), (3.19)
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where ϕ varies from 0 to 2π. It is seen from the above expression that the shape
of the vortex region is repeated periodically with period π/ω. For the complex
coordinates (2.12) that we have adopted, it is natural to define a complex velocity
as V2 = 2−1/2(Vx − iVy) = ∂W̄1/∂t, Vx and Vy being X- and Y -components of the
velocity (partial time differentiation implies fixed Lagrangian variables). The velocity
is easily obtained from (3.19), and the vorticity (3.17) becomes

Ω = − 4 ω

1− |F ′|2 {0, 0, 1} (3.20)

and remains bounded inside the vortex due to the assumption |F ′| < 1.
As shown by Abrashkin & Yakubovich (1984), any bounded Ptolemaic motion

matches with a potential flow under the continuity condition across the interface for
all velocity components. The potential flow is constructed in parametric form. For the
exterior of the vortex (3.19), complex coordinate W1 and the corresponding velocity
V2 can be expressed as functions of an auxiliary complex parameter η varying outside
the unit circle (|η| > 1):

W1 = η e−2iωt + F(η−1), V2 = 2i ω e2iωtη−1. (3.21a, b)

Note that here η is a formal parameter which has nothing to do with the Lagrangian
variables in the outer region. Since the coordinate and velocity in (3.21a, b) depend on
the same parameter, they define the function V2 = V2 (W1, t). It is known (see Lamb
1932) that such a functional dependence is necessary and sufficient for the motion to
be potential. Direct verification shows that the coordinate and velocity at the vortex
boundary found from (3.21a, b) by means of the substitution η = exp (iϕ), 0 6 ϕ < 2π
coincide with the solution for the vortex interior when ξ1 tends to exp (iϕ) in (3.18).
It can also be shown using (3.21a, b) that under the condition |F ′| < 1 when |ξ1| 6 1,
the velocity in the outer region has no singularities as a function of coordinate
V2 = V2 (W1, t). As the distance from the vortex increases, the velocity (3.21b) tends
asymptotically to that of the point vortex with circulation −4πω: V2 ∼ 2iω/W1.

Thus, expressions (3.18) and (3.21a, b) depending on arbitrary analytic function
F(ξ̄1) give a complete description of the Ptolemaic vortices. An example of the
evolution of the shape of vortex boundary (3.19) for

F(ξ1) = α
[
(ξ1 − ζ1)

−3 + (ξ1 − ζ2)
−3
]
, (3.22)

α, ζ1, ζ2 being constants (|ζ1,2| > 1), is shown in figure 1(a–f). Along with non-
stationary solutions, the Ptolemaic family includes steadily rotating vortices of hypocy-
cloidal shape which correspond to the power function F(ξ1) = ξ n1 for an integer n > 2.
Both types of vortices were first described by Abrashkin & Yakubovich (1984).

The planar Ptolemaic flows are obtained through the simplest case of separation of
variables in (3.13). But there exist other possible ways to satisfy this equation resulting
in other types of solutions of the form (3.6). We now consider solutions which are
essentially three-dimensional, unlike the Ptolemaic ones.

3.3. Flows with curvilinear vortex lines

We begin with one of the cases when the separation of variables in (3.13) for elements
of L0 is non-trivial. Assume that L31(ξ1) = 0, then (3.13) yields

(2γ + ω)L11(ξ1)

(2γ − ω)L21(ξ1)
=
L13(c)

L̄13(c)
= const. (3.23)
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Figure 1. Shapes of the Ptolemaic vortex (3.19) for function F specified by (3.22), where α = 0.83,
ζ1 = 2.2, ζ2 = 2.09 + 0.68i, for a sequence of times: (a) ωt = 0; (b) ωt = π/12; (c) ωt = 2π/12;
(d) ωt = 3π/12; (e) ωt = 4π/12; (f) ωt = 5π/12.

Here, the absolute value of the constant of separation of variables must be equal to
unity, so it can be rewritten via a new constant ν as e2iν . L33(c) does not appear in
(3.23) and thus can be an arbitrary function. For convenience of further analysis, let
us represent L11, L13, L33 as L11 = (2−ω/γ)F ′(ξ1) eiν , L13 = h′(c) eiν , L33 = q′(c), where
F(ξ1) is an arbitrary analytical function and h, q are arbitrary real-valued functions
of c. Then (3.23) is satisfied, and all the other elements Lij are found from (2.19).
Matrix L0 takes the form

L0 =

 (2− ω/γ)F ′(ξ1) eiν (2 + ω/γ)(F̄)′(ξ2) eiν h′(c) eiν

(2 + ω/γ)F ′(ξ1) e−iν (2− ω/γ)(F̄)′(ξ2) e−iν h′(c) e−iν

0 0 q′(c)

 (3.24)

and satisfies all the requirements that we have formulated. The meaning of the
notation (F̄)′ is explained in the first paragraph of § 3.2. To obtain a complete time-
dependent matrix solution, (3.24) should be substituted into (3.9). Integration of
the resulting matrix L over Lagrangian variables is straightforward and for particle
trajectories yields

W1 =
[
(2− ω/γ)F(ξ1) e−iωt + (2 + ω/γ)F̄(ξ2) eiωt + h(c)

]
e(ν−iγt), (3.25a)

W2 = W̄1, Z = q(c), (3.25b, c)

where complex notation for coordinates (2.12) holds. As seen from (3.25a), the
constant ν does not influence the structure of solutions and their dependence on
time: the factor eiν implies only rotation of the motion as a whole at the fixed angle ν
about the Z-axis, and so we set ν = 0 without losing generality. The solution (3.25a–c)
contains two arbitrary functions of the real Lagrangian variable c and one arbitrary
function of complex variables ξ1, ξ2. However, as mentioned in § 2.1, the system of the
Lagrangian variables can be rearranged arbitrarily for the sake of convenience. For
instance, one of the arbitrary functions for each Lagrangian variable can be taken as
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Figure 2. Particle trajectories (3.26a, b) for h(c) = 4 exp [−(c − 7)2/9], ω = 8.5, γ = 1, and (a)
ξ1 = 0.1, c = 7; (b) ξ1 = 0.06, c = 9 and the corresponding vortex line (c) for ξ1 = 0, t = 0 (for
discussion of vortex lines see below).

the new Lagrangian variable, say, c̃ = q(c), ξ̃1 = F(ξ1), and the remaining arbitrary
functions can be expressed in terms of the new variables: h̃(c̃) = h(q−1(c̃)). It means
that the solution (3.25a–c) is in no way restricted by reduction to

W1 =
[
(2− ω/γ)ξ1e

−iωt + (2 + ω/γ)ξ̄1e
iωt + h(c)

]
e−iγt, Z = c . (3.26a, b)

In a general case, the particle motion (3.26a, b) occurs along the trajectories repre-
senting a sum of three circular revolutions with different amplitudes and frequencies
ω + γ, ω − γ, γ in the Z = const planes. In other words, a particle travels in the
Z = const plane about an ellipse, the centre of which moves over a circle as shown
in figure 2. For incommensurable ω and γ, the trajectories are non-closed and quasi-
periodic. Although they lie in parallel planes, the motion is three-dimensional, since
due to the term h(c) in (3.26a) there exists a shear between plane layers. The function
h(c) is supposed to be single-valued so that 1/ h′(c) 6= 0. If h(c) = 0, solution (3.26a, b)
reduces to a particular case of planar Ptolemaic motions (3.16a–c).

To obtain the vorticity for this type of solution, we find the only non-zero Cauchy
invariant in conformity with (3.14) and substitute it into the general expression (2.28):

Ω =
ω2

2γ
{21/2 h′(c) cos γt, −21/2 h′(c) sin γt, 1}. (3.27)

This is at the same time the Eulerian representation of vorticity since c = Z . At any
point in the flow, the vorticity vector precesses around the direction of the Z-axis
with frequency γ. As proved in § 3.1, § 2.4, parametric expressions for the vortex lines
follow immediately from (3.26a, b), if ξ1 is set constant while c is allowed to change.
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According to (3.26a, b), the vortex lines are flat curves of identical shape described
by the function h(c) (see figure 2). At any moment of time, they lie in parallel planes
and are distinguished only by the starting point, say, corresponding to c = 0, and can
be superimposed by a translation in the Z = const plane.

It is noteworthy that the particle trajectories (3.26a, b) and related velocities allow
us to eliminate the Lagrangian variables and obtain the explicit expression for the
Eulerian velocity field in complex form:

W1t =
iω2

4γ

[
W1 +

(
1− 4γ2

ω2

)
W̄1 e−2iγt − 2 h(Z) e−iγt

]
, Zt = 0.

Here, the first term of W1t represents a stationary circular motion generating the Z-
component of vorticity, the second term contains a non-stationary two-dimensional
irrotational strain, and the third term characterizing the vertical shear is responsible
for the oscillating vorticity components in the (X,Y )-plane.

A complete study of the motion (3.26a, b) implies considering relevant boundary
problems. Here we restrict ourselves to determining the shape of rigid boundaries
which may confine the above-mentioned ideal-fluid motion. Let us find an envelope
surface of particle trajectories in the frame of reference rotating about the Z-axis
with frequency γ. This envelope surface can be then replaced by a solid boundary
at which the impermeable boundary conditions are satisfied. Thus, coming back
to the laboratory frame of reference we have the necessary condition satisfied for a
rotating solid body. Analysis of (3.26a, b) shows that the appropriate shapes constitute
an extensive family of rotating surfaces distinguished by elliptical cross-sections in
the (X,Y )-planes with a certain eccentricity and orientation of principal axes. A
parametric equation of such surfaces is derived in the form

W1 =
{[

(2− ω/γ) e−iϕ + (2 + ω/γ) eiϕ
]
r(Z) + h(Z)

}
e−iγt,

where r(Z) is an arbitrary function which characterizes the dimension of the cross-
section in the Z = const plane, and ϕ is an angular parameter varying within
0 6 ϕ < 2π.

We shall consider more complex problems of matching with a potential flow later
in § 4.

3.4. Flows with rectilinear vortex lines

In order to study other cases of the solutions contained in (3.6), (3.9) let us discuss
one more way to separate variables in (3.13). Assume that L13 is real, then (3.13) can
be satisfied by

L31(ξ1)

(ω + 2γ)L11(ξ1) + (ω − 2γ)L21(ξ1)
= − L13(c)

ωL33(c)
= λ, (3.28)

where λ is a real constant having the dimension of time. Separation of variables
in (3.13) is also possible for complex L13 when L13 = f(c)eiν with f(c) real-valued
and ν constant (independent of c). However, it can be shown by analogy with (3.25)
that taking account of constant phase shift due to the term eiν does not allow
any considerable extension of the resulting solutions, and therefore let us assume
ImL13 = 0 for simplicity. We see from (3.28) that two functions out of L11(ξ1), L21(ξ1),
L31(ξ1) can be taken arbitrarily and the third one must be their linear combination.
Let us choose L11 = G′(ξ1), L21 = F ′(ξ1), L33 = q′(c). We then obtain using (2.19) the
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Figure 3. Particle trajectories (3.30a–c) for F(ξ1) = α ξ1, α = 45 + 23i, ξ1 = 0.1 + 0.1i, λ = −0.04,
ω = 10, γ = 1. (a) c = 75; (b) c = 7.5.

following structure of matrix L0:

L0 =

 G′(ξ1) (F̄)′(ξ2) −ωλ q′(c)
F ′(ξ1) (Ḡ)′(ξ2) −ωλ q′(c)

λ[(ω + 2γ)G′ + (ω − 2γ)F ′] λ[(ω + 2γ)(Ḡ)′ + (ω − 2γ)(F̄)′] q′(c)

 .
(3.29)

The meaning of notation (F̄)′, (Ḡ)′ is the same as introduced in the first paragraph of
§ 3.2. Particle trajectories are derived by integration of (3.6) with the obtained L0 over
the Lagrangian variables. Proceeding from the same argumentation that we employed
to reduce (3.25a–c) to (3.26a, b), setting G(ξ1) = ξ1, q(c) = c does not restrict the
considered family of solutions. The resulting particle trajectories take the form

W1 =
[
ξ1e
−iωt + F̄(ξ2)e

iωt − ωλc] e−iγt, W2 = W̄1, (3.30a, b)

Z = 2λRe
{

[(ω + 2γ)ξ1 + (ω − 2γ)F(ξ1)] e−iωt
}

+ c (3.30c)

with only one arbitrary function F that really influences the structure of the flows. The
trajectories (3.30a–c) contain four time-dependent harmonic terms with frequencies
ω + γ, ω − γ, γ, ω. In space, they represent windings on toroidal surfaces, which are
formed by rotation about the Z-axis of ellipses having different orientations as shown
in figure 3(a, b). For incommensurable frequencies ω and γ these windings are quasi-
periodic, and each trajectory fills in the entire surface of the relevant torus. The
vorticity of such flows is obtained from (2.28) and (3.14):

Ω =
S3

det L0

{−21/2 ωλ cos γt, 21/2 ωλ sin γt, 1}, (3.31a)

where

S3 = −2[ω + γ + (ω − γ)|F ′|2 + ωλ2|ω + 2γ + (ω − 2γ)F ′|2], (3.31b)

det L0 = (1 + 2ω2λ2)(1− |F ′|2) + 4ωγλ2|1− F ′|2. (3.31c)

As proved in § 3.1, § 2.4, formulae (3.30a–c) with fixed ξ1 and varying c describe
parametrically a vortex line which is at the same time the material line containing
particles with given ξ1. That is the case when vortex lines are rectilinear and remain
inclined at a constant angle to the Z-direction in the course of their motion, while
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their projections on the (X,Y )-plane rotate with frequency γ. Unlike the vorticity of
motions (3.26a, b) given by (3.27), the vorticity (3.31a–c) is, generally, a function of
the complex Lagrangian variables.

If λ = 0, the motion (3.30) becomes a plane Ptolemaic flow (3.16a–c) with vorticity
in the Z-direction. Therefore, along with the motions (3.25a–c), the flows (3.30a–c)
may be considered as three-dimensional generalizations of the Ptolemaic flows.

Consider now elementary boundary problems for the motions (3.30a–c). If the
function F(ξ1) is linear with respect to the complex Lagrangian variable: F = αξ1,
α = const, then the flow can satisfy the impermeability conditions at the rotating rigid
boundaries described parametrically by

W1 =
[(

e−iϕ + ᾱ eiϕ
)
r(c)− ωλc] e−iγt , (3.32a)

Z = 2λRe{[ω + 2γ + α(ω − 2γ)] eiϕ}r(c) + c, (3.32b)

where r(c) is an arbitrary real-valued function, ϕ (0 6 ϕ < 2π) and c are parameters.
Let us now demonstrate how one of the classical solutions for a rotating liquid mass,

namely, a subclass of Riemann’s ellipsoids (see Chandrasekhar 1969), can be deduced
from the free-surface boundary problem for the motions (3.30a–c). The pressure field
of the flows (3.30a–c) is determined by substituting these solutions into the original
set of Lagrangian equations (2.2) with subsequent integration of the pressure gradient
over the Lagrangian variables. The manipulation yields

p

ρ
= ω2γ2λ2c2 + (ω + γ)2|ξ1|2 + (ω − γ)2|F |2 + λ2ω2|(ω + 2γ)ξ1 + (ω − 2γ)F |2

+2 Re{−λωγ2c (ξ1 + F) e−iωt + [{(ω + γ)2 + λ2ω2(ω2 − 4γ2)}ξ1F

−4γω

∫
F dξ1 + 1

2
λ2ω2{(ω + 2γ)2ξ2

1 + (ω − 2γ)2F2}]e−2iωt}. (3.33)

Assume that F = −ξ1. It is then seen from (3.33) that for a certain relationship of the
parameters, pressure may become independent of time, i.e. change into a function of
the Lagrangian variables only:

p = ρ (ω2 + γ2)(4 | ξ1|2 + 1
8
c2) for λ2 = (ω2 + γ2)/8γ2ω2. (3.34a, b)

Constancy of the pressure (3.34a) is the boundary condition on the free surface of
a liquid mass involved in the motion (3.30a–c) with the restriction (3.34b) on the
parameters. The equation of the free surface in terms of the Lagrangian variables
follows immediately: | ξ1|2 + 1

32
c2 = const. The corresponding equation of ellipsoids

in space is obtained from (3.30a–c). It can be shown that both vorticity and angular
velocity vectors lie in a principal plane of these ellipsoids, which is the distinctive
feature of a certain subclass of Riemann’s ellipsoids according to Chandrasekhar
(1969).

3.5. Special case of flows with rectilinear vortex lines

Let us analyse one more type of flow with rectilinear vortex lines that is derived from
the matrix expression (3.6). It is distinguished from the motions studied in § 3.4 by the
fact that its vortex lines are strictly perpendicular to the axis of rotation Z . This case
does not fall under the procedure of variable separation (3.28) (otherwise it would
correspond to λ = ∞) and should be considered separately.

Suppose that in (3.13) L33 = 0, then the function L31(ξ1) is arbitrary, while elements
L11, L21 and L13 are related by (3.23). It can be shown by analogy with the analysis



188 E. I. Yakubovich and D. A. Zenkovich

of (3.24), (3.25a–c) in § 3.3 that taking L13 as a real-valued function is sufficient
for a comprehensive study of the solutions of this type. Assume that L11, L21 are
expressed in terms of an arbitrary analytical function G(ξ1) as L11 = (2−ω/γ)G′(ξ1),
L21 = (2 +ω/γ)G′(ξ1), then (3.23) is satisfied provided that ImL13 = 0. Introduce new
arbitrary functions for L31, L13 by L31 = F ′(ξ1), L13 = q′(c), then the general form of
matrix L0 is constructed using (2.19) as follows:

L0 =

 (2− ω/γ)G′(ξ1) (2 + ω/γ)(Ḡ)′(ξ2) q′(c)
(2 + ω/γ)G′(ξ1) (2− ω/γ)(Ḡ)′(ξ2) q′(c)

F ′(ξ1) (F̄)′(ξ2) 0

 , (3.35)

where Ḡ, F̄ are ‘conjugate’ functions to G, F defined via the Riemann–Schwartz

symmetry principle, e.g. Ḡ(ζ) = G(ζ̄) (see the discussion in § 3.2 after (3.15)). As in the
derivation of (3.26a, b) and (3.30a–c), keeping unnecessary arbitrary functions in the
further development does not make sense because of the parametric character of the
Lagrangian solutions. For simplicity we set G(ξ1) = ξ1 and q(c) = c without losing
generality. Then we obtain particle trajectories by integration over the Lagrangian
variables:

W1 = [(2− ω/γ)ξ1e
−iωt + (2 + ω/γ)ξ̄1e

iωt + c] e−iγt, (3.36a)

Z = 2 Re
{
F(ξ1) e−iωt

}
. (3.36b)

The vorticity vector of such a flow

Ω =
2ω2 + γ2|F ′|2

2γReF ′
{−21/2 cos γt, 21/2 sin γt, 0} (3.37)

lies in the Z = const planes and rotates with frequency −γ.
Let us finally return to the general matrix expression (3.6) embracing all the family

of solutions with precessing vorticity and specify what type of flow corresponds to its
particular case (3.4) where matrix γ̂ does not appear: R = R0 exp (ω̂t). Obviously, the
precession of vorticity with frequency γ vanishes in this case and the motion reduces
to the planar Ptolemaic flow (3.16a–c) in which γ = 0. This can be demonstrated
by setting γ = 0 in the three-dimensional solutions (3.30a–c) and (3.36a, b) with an
appropriate rotation of the reference frame so as to make the new Z-axis parallel to
vorticity.

4. Precession of cylindrical vortices in irrotational strain
The three-dimensional motions that have been studied in § 3 above are unbounded

and rotational at any point in space. Obviously, bounded vortex structures within an
irrotational exterior motion or rotational flows decaying at infinity are more realistic
physically. As seen from (3.26a, b), (3.30a–c), (3.36a, b), none of these solutions can
describe a rotational motion vanishing at infinity. On the other hand, it was shown
by Abrashkin & Yakubovich (1984) that matching with a potential flow is possible
for any two-dimensional Ptolemaic motion (3.16a–c). Since our solutions (3.26a, b),
(3.30a–c) are a generalization of the planar Ptolemaic motions, it is natural to question
whether their matching with a potential flow may take place (when using the term
‘matching’ we imply that all the components of flow velocities agree across the
interface).

It is known that if there are no rigid boundaries, a region of rotational motion can
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be bounded only by surfaces which are composed of vortex lines (see e.g. Saffman
1992, § 1.4). For all the solutions in the form (3.6) that we have studied, vortex lines
begin and end at infinity, and therefore rotational motion can be localized only in the
directions transverse to vorticity. Thus we can formulate the problem of matching with
an irrotational flow for a vortex tube of finite cross-section of unbounded motions
(3.26a, b), (3.30a–c) or (3.36a, b).

Let us focus on the detailed analysis of solution (3.30a–c) with the linear function
F = αξ1, which reduces to

W1 =
(
ξ1 e−iωt + α ξ̄1 eiωt + βc

)
e−iγt, W2 = W̄1, Z = 2σRe

(
ξ1e
−iωt
)

+ c, (4.1a–c)

where α, β = −ωλ and σ = λ[(ω+2γ)+α(ω−2γ)] are real constants, α 6= 1. According
to (3.31a–c), the vorticity of such a motion has a constant magnitude and precesses
about the Z-direction with frequency γ:

Ω = 2
ω
[
ω + γ + α2(ω − γ)]+ 4β2 [ω + 2γ + α(ω − 2γ)]2

ω(1 + 2β2)(1− α2) + 4γβ2(1− α)2

 −21/2β cos γt

21/2β sin γt

−1

 . (4.2)

Common to the entire family of solutions (3.9) is the fact that their vortex lines
are identical to the coordinate lines of the Lagrangian variable c (see § 3.1, § 2.4).
In particular, the parametric expression for vortex lines is obtained from (4.1a–c)
immediately by fixing ξ1 and letting c change along the lines. The vortex lines of
(4.1a–c) are evidently rectilinear and follow the direction of the vorticity (4.2). Consider
the vortex lines that correspond to ξ1 = exp (iϕ), 0 6 ϕ < 2π. They represent the
elements of the cylindrical surface that confine a vortex tube within the flow (4.1a–c).
Substituting ξ1 = exp (iϕ) into (4.1a–c) we obtain the expression for this surface

W1 = [ei(ϕ−ωt) + αe−i(ϕ−ωt) + βc]e−iγt , Z = 2σ cos(ϕ− ωt) + c (4.3a, b)

in two parameters ϕ and c, where 0 6 ϕ < 2π, −∞ < c < ∞. It can be seen that
(4.3a, b) describes a cylinder of elliptic cross-section that precesses about the Z-axis
with frequency γ as shown schematically in figure 4, where the axis of the cylinder is
the vortex line corresponding to ξ1 = 0 in (4.1a–c). A more explicit representation for
the shape of this vortex tube will be derived below in this section.

This section is aimed at studying whether the precessing vortex tube (4.3a, b)
can be an isolated vortex surrounded by an irrotational fluid, provided that all
three velocity components are continuous across the vortex boundary. There is no
generally applicable technique for constructing a potential flow that matches a three-
dimensional, non-stationary rotational motion in a bounded region. In fact, the
problem of matching is essentially self-consistent and requires a coordinated solution
for both potential and rotational motions. For a given fragment of an unbounded
rotational motion, the continuity of both normal and tangential velocities across the
interface constitutes a boundary problem for Laplace’s equation in the outer region
where both Dirichlet and Neumann conditions must be satisfied simultaneously on a
time-dependent surface.

The problem of potential continuation of the rotational motion (4.1a–c) into the
exterior of the vortex tube (4.3a, b) will be treated according to the following scheme:
on passing to the reference frame moving in accordance with the precession of the
vortex tube, the Eulerian velocity field is decomposed into two partial two-dimensional
fields, one of them being potential and the other being similar to the velocity field
inside Kirchhoff’s vortex. The potential field is extended into the exterior trivially,
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Figure 4. Sketch of a section of the precessing vortex tube and the moving coordinate system
X ′, Y ′, Z ′ at t = 0.

and for the planar rotational component we apply the technique of parametric
continuation described in § 3.2. The resulting potential motion outside the vortex
proves to be three-dimensional and non-stationary.

Let us proceed to a detailed description of the method of construction of the outer
potential field. In the matrix notation the inner rotational flow (4.1a–c) takes the form

W = L ξ, L =

 e−i(ω+γ)t α ei(ω−γ)t β e−iγt

α e−i(ω−γ)t ei(ω+γ)t β eiγt

σ e−iωt σ eiωt 1

 , (4.4a, b)

where L does not depend on the Lagrangian variables and is a function of time only.
Complex velocity components

V c = {V1, V2, V3} = TV , (4.5)

where T is the same as in (2.13), V = {Vx, Vy, Vz} = X t is the real velocity, are obtained
as the time derivatives of the particle positions with fixed Lagrangian variables:

V c = W t = Lt ξ. (4.6)

Since the dependence of velocity on ξ is linear, the same type of dependence on
coordinates in the Eulerian representation follows after eliminating the Lagrangian
variables from (4.4a), (4.6):

V c = Lt L
−1W . (4.7)

Matching of the rotational flow inside the vortex with the outer potential motion is
performed in the moving frame of reference X ′Y ′Z ′ introduced so that the axis of the
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vortex serves as the Z ′-axis of the new coordinate system as shown in figure 4. The
quantities related to the moving reference frame will be marked hereinafter by a prime,
unlike § 3, where the prime denotes differentiation. The orthogonal transformation to
the precessing reference frame

X ′ = PX , PT = P−1 (4.8a, b)

must satisfy the condition that a unit vector collinear to the vorticity (4.2) has the
components {0, 0, 1} in the new reference frame. Matrix P is chosen in the following
form:

P = {

 cos γt − sin γt −2−1/2β

{−1 sin γt {−1 cos γt 0

2−1/2β cos γt −2−1/2β sin γt 1

 , where { = (1 + 2β2)−1/2. (4.9)

New complex coordinates W ′ = {W ′
1,W

′
2,W

′
3} are introduced by analogy with (2.12),

(2.13):

W ′
1 = 2−1/2(X ′ + iY ′), W ′

2 = 2−1/2(X ′ − iY ′), W ′
3 = Z ′, W ′ = TX ′. (4.10)

They are related to the complex Lagrangian variables ξ via the modified Jacobi
matrix L′:

W ′ = L′ξ, where L′ = TPT ∗L. (4.11)

The elements of L′ are derived by means of elementary but cumbersome manipulations
reflecting the change of the reference frame that involve the matrices T , L, and P
given in (2.13), (4.4b), and (4.9), respectively:

L′11 = L′22 = l1 e−iωt, l1 = 1
2
[{(α+ 1− 2βσ)− α+ 1],

L′12 = L′21 = l2 eiωt, l2 = 1
2
[{(α+ 1− 2βσ) + α− 1],

L′31 = L′32 = l3 e−iωt, l3 = 2{βγ(α− 1),

L′13 = L′23 = 0, L′33 = {−1.

 (4.12)

The parametric equation of the vortex boundary in the new complex coordinates is
obtained by the substitution of ξ1 = exp [i(ϕ+ωt)], ξ2 = exp [−i(ϕ+ωt)] into (4.11):

W ′
1 = l1 eiϕ + l2 e−iϕ, W ′

2 = W ′
1, (4.13a, b)

Z ′ = 2 l3 cosϕ+ c/{, (4.13c)

where the real constants l1, l2, l3 are given in (4.12), ϕ and c are parameters: 0 6 ϕ < 2π,
−∞ < c < ∞. Now the shape of the cross-section of the vortex tube through the
(X ′, Y ′)-plane is described explicitly by (4.13a) and proves to be elliptical and steady
in the moving frame of reference. The elements of the elliptic cylinder corresponding
to the change of c while ϕ is constant are, according to (4.13a–c), parallel to the
Z ′-axis as was to be expected (see figure 4).

The velocity in the moving frame of reference, X ′t, obtained from (4.8a) consists
of two terms: PX t that represents projections of velocity V = X t on the axes of
the precessing coordinate system, and PtX that accounts for the relative motion of
the two reference frames. We retain hereafter only the first term of the velocity for
both vortical and potential regions and denote V ′ = {V ′x, V ′y, V ′z} = PV . The relative
velocity PtX can be omitted as an additive term that is cancelled in the continuity
conditions across the vortex boundary irrespective of its shape. In the following let V ′c
stand for the set of complex quantities {V ′1, V ′2, V ′3} resulting from the transformation of
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V ′x, V ′y, V ′z by analogy with (4.5): V ′c = TV ′ (note that V ′z ≡ V ′3). The linear relationship

between V ′c and ξ follows from the introduced notation and (4.6): V ′c = TPT ∗Lt ξ.
Using (4.11) to eliminate the Lagrangian variables we obtain the Eulerian expression
for the complex velocity:

V ′c = EW ′, where E = TPT ∗LtL−1TPTT ∗. (4.14)

An extensive matrix algebra for the elements of E yields

E11 = Ē22 = −i
ωσ2 + (ω − γ)α2 + ω + γ

{(α− 1)(α+ 1− 2σβ)
,

E12 = Ē21 = −i{

[
2ωσ2 + (ω − 4γ)α2 + 6ωα+ 4γ + ω

]
β2 + 2ωα

(α− 1)(α+ 1− 2σβ)
,

E13 = Ē23 = Ē31 = E32 = −i{γβ, E33 = 0,


(4.15)

and for the components of V ′c inside the vortex we have

V ′1 = E11 W
′
1 + E12 W

′
2 + E13 Z

′, V ′2 = V̄ ′1, (4.16a, b)

V ′z = E31 W
′
1 + E32 W

′
2. (4.16c)

This velocity field is three-dimensional but can be represented as a sum of two planar
solenoidal vector fields of different orientations: V ′c = V ′ potc + V ′ rotc , where V ′ potc is
potential and V ′ rotc is rotational, and has a structure similar to the velocity inside
Kirchhoff’s elliptical vortex:

V
′ pot
1 = E13 Z

′, V ′ rot1 = E11 W
′
1 + E12 W

′
2, (4.17a, b)

V ′ potz = Ē13 W
′
1 + E13 W

′
2, V ′ rotz = 0. (4.17c, d)

Since we omit the relative velocity and simply take projections of the velocity on the
instantaneous axes of the moving reference frame, the condition of potentiality has
the same form in both stationary and moving coordinates: rotXV = rotX ′V

′ = 0. In
terms of the complex velocity components it is written as

∂ V ′1
∂W ′

1

=
∂ V ′2
∂W ′

2

,
∂ V ′z
∂W ′

2

=
∂ V ′1
∂ Z ′

. (4.18a, b)

The potentiality of V ′ potc given by (4.17a), (4.17c) is confirmed by direct verification.
We shall consider the potential continuation of two partial velocities V ′ potc and V ′ rotc

into the outer region independently. Irrespective of the shape of the vortex boundary,
the potential component V ′ potc which is linear in coordinates can be extended into
the exterior trivially. It suffices to suppose that the interior Eulerian expressions for
its components (4.17a), (4.17c) hold for the outer region. The remaining term V ′ rotc

is rotational but purely two-dimensional, and the technique of potential continuation
for plane motions surveyed in § 3.2 applies to it.

For the parametric continuation of the rotational component V ′ rotc (4.17b), (4.17d)
into the exterior, we proceed from the parameterization (4.13a, b) of the vortex
boundary. The subsequent derivation depends on the ratio of the constants l1 and
l2 which appear in (4.13a). Since we have assumed α 6= 1 in (4.1a), then |l1/l2| 6= 1
in conformity with (4.12) and the elliptic cross-section of the vortex described by
(4.13a, b) does not degenerate into a line. Let us consider the case of |l1/l2| > 1.
Following the method of § 3.2 we obtain the potential velocity

V ′1 = (E11 l2 + E12 l1)η̄ + (E11 l1 + E12 l2)/η̄ (4.19a)
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at the point of the outer region

W ′
1 = l1 η + l2/η, |η| > 1, (4.19b)

where η is the complex parameter that varies outside the unit circle and becomes
exp (iϕ) at the vortex boundary. As η → exp (iϕ), the coordinate W ′

1 in (4.19b) tends
to the vortex boundary given by (4.13a), and the velocity (4.19a) agrees with the
rotational part of the interior velocity (4.17b), (4.17d). It can be shown that the
condition dW ′

1/dη 6= 0 which is satisfied for (4.19b) by virtue of the assumption
|l1/l2| > 1 ensures the absence of branch points of the velocity (4.19a) as a function
of W ′

2 in the exterior of the ellipse. In order to obtain an explicit Eulerian expression
for velocity we eliminate the parameter η from (4.19a, b):

V ′1 = 1
2
(E11 l2/l1 + E12)[W

′
2 + (W ′ 2

2 − 4 l1l2)
1/2]

+2 l1 (E11 l1 + E12 l2)[W
′
2 + (W ′ 2

2 − 4 l1l2)
1/2]−1 for |l1/l2| > 1. (4.20)

Here, the radicals have positive signs since η̄ = [W ′
2 +(W ′ 2

2 −4 l1l2)
1/2]/(2 l1) must stay

outside the unit circle while W ′
2 tends to infinity. Potentiality of the velocity (4.20)

is verified by the condition (4.18a) which is satisfied for (4.20) trivially. The main
contribution to the asymptotic form of (4.20) far from the vortex (as |W ′

2| → ∞) is
made by the term linear in the coordinate:

V ′1 ∼ (E11 l2/l1 + E12)W
′
2 + O(W ′ −1

2 ),

while the near circulation field of the vortex decays at infinity in inverse proportion
to distance.

The procedure of potential continuation of (4.17b), (4.17d) for |l1/l2| < 1 is quite
similar except for the choice of the parameterization for the region of potential flow.
The problem is solved by setting

W ′
1 = l1/η̄ + l2η̄, |η| > 1, (4.21a)

V ′1 = (E11 l1 + E12 l2)η + (E11 l2 + E12 l1)/η, (4.21b)

where η = exp (iϕ) at the vortex boundary. Since (4.21a) for |l1/l2| < 1 entails
dW ′

1/dη̄ 6= 0 throughout the outer region, there can be no branching of the velocity
(4.21b) as a function of the coordinate. The Eulerian expression for velocity takes the
form

V ′1 = 1
2
(E11 l1/l2 + E12)[W

′
2 + (W ′ 2

2 − 4 l1l2)
1/2]

+2 l2 (E11 l2 + E12 l1)[W
′
2 + (W ′ 2

2 − 4 l1l2)
1/2]−1 for |l1/l2| < 1. (4.22)

The total three-dimensional velocity outside the vortex is obtained as a sum of V ′ potc ,
which is potential everywhere and given by (4.17a, c), and the potential continuation
of the component V ′ rotc , (4.20), (4.22). The resultant expression for any proportion
|l1/l2| takes the form

V ′1 = 1
2
(E11 lmin/lmax + E12)[W

′
2 + (W ′ 2

2 − 4 l1l2)
1/2]

+2 (E11 l
2
max + E12 l1l2)

[
W ′

2 + (W ′ 2
2 − 4 l1l2)

1/2
]−1

+ E13 Z
′,

V ′z = Re{E13 W
′
2}, V ′2 = V̄ ′1,

 (4.23)

where lmax and lmin are the largest and the smallest coefficient of l1, l2 in absolute value,
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respectively. As seen from these formulae, the dependence of the velocity components
transversal to the vortex axis on the coordinates is nonlinear, but the asymptotic
behaviour of the velocity at a large distance from the vortex remains linear in the
coordinates:

V ′1 ∼ (E11 lmin/lmax + E12)W
′
2 + E13 Z

′ + O(W ′ −1
2 ),

V ′z ∼ Re{E13 W
′
2},

which corresponds to a stationary linear straining flow or a deformation potential
quadratic in coordinates X ′, Y ′, Z ′ far from the vortex. As seen from (4.15), one of the
coefficients of the external strain, E13, never vanishes for non-degenerate precession
of the vortex when both λ and γ are not zero. Consequently, the freely precessing
vortex (4.1a–c) (i.e. not connected with an exterior strain flow) in the form of an
elliptic cylinder cannot exist. It is now clear that the three-dimensional precession
of the cylindrical vortex may occur only under the action of a coordinated strain
that changes its orientation in accordance with the motion of the vortex and is
non-stationary and periodical as a function of fixed coordinates X,Y , Z .

In spite of the fact that the motion of the vortex is non-autonomous, the mecha-
nism of forced precession studied above may represent a non-trivial example of the
interaction between three-dimensional vortex structures and ambient flows.

There are also several noteworthy two-dimensional special cases of the solution
derived in this section. First, for γ = 0 in (4.1a–c) our model reduces to the stationary
two-dimensional columnar vortices of elliptic cross-section in a plane strain studied
by Moore & Saffman (1971). They showed, however, that certain two-dimensional
configurations of this type are unstable if the strain is strong enough and the aspect
ratio of the elliptic cross-section is large enough. Apart from that, setting λ = β = 0
in (4.1a–c) turns the precession of the moving reference frame X ′, Y ′, Z ′ into rotation
about the Z-axis according to (4.8a, b), (4.9) and reduces the solutions (4.14), (4.23)
to a variety of two-dimensional vortices in a rotating fluid. They appear to be
quite analogous to the steady states of two-dimensional elliptic vortices in externally
imposed strain combined with rotation of constant rate γ, that were described in
Kida (1981) (see also Saffman 1992, § 9.3).

Our study of three-dimensional precessing vortices is restricted to the rotational
flow (4.1a–c) that belongs to the more general set of solutions discussed in § 3. But the
method developed for (4.1a–c) should work as well for the other types of solutions in
the case of rectilinear vortex lines. In particular, the results that we obtained above
apply to the solutions (3.26a, b) for a linear function h(c) = βc:

W1 =
[
(2− ω/γ)ξ1 e−iωt + (2 + ω/γ)ξ̄1 eiωt + βc

]
e−iγt, Z = c.

Solutions of this type do not require a separate study, since the above expression
for particle trajectories is at the same time the particular case of (4.1a–c) for α =
(2γ + ω)/(2γ − ω) (up to an appropriate scaling of the Lagrangian variables).

The problem of isolated vortex tubes may be formulated on the basis of the
solutions of § 3 much more generally. Worthy of consideration, in our opinion, are
vortices of a non-elliptic transverse section. It is also interesting to determine possible
shapes of precessing curved vortex filaments of finite thickness using the solution
(3.26a, b) with a nonlinear function h(c). However, such problems require significant
extension of the available techniques and are beyond the scope of this paper.
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5. Concluding remarks

This paper develops the concept of fluid motion as a continuous deformation of
infinitesimal material vector elements. The Jacobi matrix that obeys the governing
equations (2.8)–(2.10) is shown to be the most adequate and natural characteristic
of motion for this concept. The matrix (‘deformation’) approach is distinct from
the conventional Lagrangian (‘trajectory’) formulation and is, actually, similar to the
tensor description in the elasticity theory.

Most of the potential advantages of the proposed approach are yet to be explored,
so we confine ourselves to just a few remarks. To illustrate the potentialities of the
matrix formulation we derived from the system of matrix equations several new
classes of non-stationary three-dimensional rotational flows that would be extremely
difficult to find within the framework of conventional formulations. For instance, the
solution (3.30a–c) written for real X,Y , Z and a, b, c satisfies the original Lagrangian
equations (2.2), (2.3) but becomes so cumbersome and complicated that it is difficult
to find from (2.2), (2.3) directly (note that the Eulerian expression for the velocity
field corresponding to (3.30a–c) cannot be obtained in an explicit form at all).

The matrix approach admits a flexible formulation of the problem of interest
and offers a compact ‘block’ representation of non-trivial three-dimensional motions
(e.g. (3.6) embraces not only the entire family of flows with precessing vorticity
but also the plane Ptolemaic flows). It allows one to take advantage of the powerful
machinery of matrix calculus, which is especially important for numerical simulations.
These features may also be useful for developing perturbation methods for a wide
class of particular problems. It is also worth noting that, surprisingly, the matrix
formulation makes it possible to study three-dimensional rotational motions using
analytic functions of complex variables, while traditionally the field of application of
analytic functions is confined to plane potential motions.

In our opinion, the set of matrix equations studied in this paper does not exhaust
the potential of the Lagrangian matrix approach. Along with new applications,
extension of the theory taking into account viscous effects, non-uniform density, and
compressibility, is an interesting and, we believe, realistic prospect.
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